Madent Al-Elm University College
College Of Engineering
Civil Engineering Department

Reinforced concrete design II Subject: Slab Thickness and DDM

Monthly Exam
Time: 1 hr
Stage: $4^{\text {th }}$

Typical Solutions

Q. 1 (50\%) Find the minimum thickness of a slab for an interior panel due to deflection control for the following: Use $\mathbf{f y}=\mathbf{4 2 0}$ MPa. (60000 psi).
a- Slab with beams $(8.2 \times 7.8) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=\mathbf{2 . 2}$
\mathbf{b} - Slab without drop panels $(5.4 \times 5.0) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathbf{m}}=\mathbf{0 . 1 1}$
c- Flat plate $(4.4 \times 4.6) \mathrm{m}$ clear span.
d- Flat slab with drop panels $(6.2 \times 6.2) \mathrm{m}$ clear span.
e- Slab with beams $(5.2 \times 5.8) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=\mathbf{1 . 7}$

Solution:

a- Slab with beams $(8.2 \times 7.8) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=\mathbf{2 . 2}$
$\alpha_{\mathrm{m}}=2.2>2.0$
$\mathrm{h}=\frac{\ell \mathrm{n}\left(0.8+\frac{f y}{1400}\right)}{36+9 \beta} \beta=\frac{\ell n}{S n}=\frac{8.2}{7.8}=1.051$
$\mathrm{h}=\frac{8200 *\left(0.8+\frac{420}{1400}\right)}{36+9 * 1.051}=198.421 \mathrm{~mm}>90 \mathrm{~mm} \mathrm{O} . \mathrm{K}$
Use $\mathrm{h}=200 \mathrm{~mm}$
b- Slab without drop panels $(5.4 \times 5.0) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathbf{m}}=\mathbf{0 . 1 1}$ $\alpha_{\mathrm{m}}=0.11<0.2$ go to Table 8.3.1.1
From table $\mathrm{h}=\frac{\ell n}{33}=\frac{5400}{33}=163.636 \mathrm{~mm}>125 \mathrm{~mm} \mathrm{O} . \mathrm{K}$
Use $\mathrm{h}=170 \mathrm{~mm}$
c- Flat plate $(4.4 \times 4.6) \mathrm{m}$ clear span.
From Table 8.3.1.1 $\mathrm{h}=\frac{\ell n}{33}=\frac{4600}{33}=139.394 \mathrm{~mm}>125 \mathrm{~mm} \mathrm{O} . \mathrm{K}$
Use $\mathrm{h}=140 \mathrm{~mm}$
d- Flat slab with drop panels $(6.2 \times 6.2) \mathrm{m}$ clear span
From Table 8.3.1.1 $\mathrm{h}=\frac{\ell n}{36}=\frac{6200}{36}=172.22 \mathrm{~mm}>100 \mathrm{~mm} \mathrm{O} . \mathrm{K}$
Use $\mathrm{h}=180 \mathrm{~mm}$.
e- Slab with beams $(5.2 \times 5.8) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=\mathbf{1 . 7}$
$0.2<\alpha_{\mathrm{m}}=1.7<2.0$
$\mathrm{h}=\frac{\ell n\left(0.8+\frac{f y}{1400}\right)}{36+5 \beta\left(\alpha_{f m}-0.2\right)} \quad \beta=\frac{\ell n}{S n}=\frac{5.8}{5.2}=1.115$
$\mathrm{h}=\frac{5800 *\left(0.8+\frac{420}{1400}\right)}{36+5 * 1.115 *(1.7-0.2)}=143.815 \mathrm{~mm}>125 \mathrm{~mm} \mathrm{O} . \mathrm{K}$
Use $\mathrm{h}=150 \mathrm{~mm}$

For exterior panel

Interior Negative moment $=277.88 \mathrm{kN} . \mathrm{m}$
$\alpha_{\mathrm{f}}=0$
Negative moment at CS $=0.75 \times 277.88=208.41 \mathrm{kN} . \mathrm{m}$
Negative moment at $\mathrm{MS}=277.88-208.41=69.47 \mathrm{kN} . \mathrm{m}$
Positive moment $=206.43 \mathrm{kN} . \mathrm{m}$
Positive moment at $\mathrm{CS}=0.6 \times 206.43=123.86 \mathrm{kN} . \mathrm{m}$
Positive moment at $\mathrm{MS}=206.43-123.86=82.57 \mathrm{kN} . \mathrm{m}$
Exterior negative moment $=103.2 \mathrm{kN} . \mathrm{m}$
$\alpha_{\mathrm{f}}=0 \quad \& \quad \beta_{\mathrm{t}}=0$
Negative moment at CS $=1 \times 103.2=103.2 \mathrm{kN} . \mathrm{m}$
Negative moment at $\mathrm{MS}=103.2-103.2=0$

