
Typical Solutions

Positive moment at $CS = 0.6 \times 138.94 = 83.36$ kN.m Positive moment at MS = 138.94 - 83.36 = 55.58 kN.m

Positive moment at MS = 206.43 - 123.86 = 82.57 kN.m Exterior negative moment = 103.2 kN.m Table 8.10.5.2

 $\alpha_{\rm f} = 0 \& \beta_{\rm t} = 0$

Positive moment = 206.43 kN.m

Negative moment at $CS = 1 \times 103.2 = 103.2 \text{ kN.m}$ Negative moment at MS = 103.2 - 103.2 = 0

Negative moment at CS = $0.75 \times 277.88 = 208.41$ kN.m

Positive moment at CS = $0.6 \times 206.43 = 123.86$ kN.m

Negative moment at MS = 277.88 - 208.41 = 69.47 kN.m

Table 8.10.5.2—Portion of exterior negative M_u in column strip

$a_{f1}\ell_2/\ell_1$	βι	ℓ_2/ℓ_1		
		0.5	1.0	2.0
0	0	1.0	1.0	1.0
	≥2.5	0.75	0.75	0.75
≥1.0	0	1.0	1.0	1.0
	≥2.5	0.90	0.75	0.45

Note: Linear interpolations shall be made between values shown. β_t is e Eq. (8.10.5.2a), where C is calculated using Eq. (8.10.5.2b).